Network Modifier

This modifier will cause the particles to move in a network or gridlike manner.

Interface

This modifier has two modes of operation, which are:

In addition there are several parameters which are common to both modes.

For the 'Groups Affected', 'Mapping', and 'Falloff' tabs, and for the buttons at the bottom of the interface, please see the 'Common interface elements' page.

Parameters

Common settings

These parameters are common to both 'Operation' options.

Enabled

Uncheck this switch to disable the modifier.

Mode

Independent [default setting]

In this mode, the modifier will work in the same way as a standard Cinema 4D particle modifier: particles will be affected if they come into the field of effect of the modifier. X-Particle Actions have no effect on the modifier in this mode.

Action-Controlled

In this mode, the modifier will only act on a particle when told to do so by an Action. Until that point, the particle will not be affected, but once activated for a particular particle, the modifier will continue to influence it as long as it is in the field of effect of the modifier. The modifier's effect on a particle can be halted by means of another Action, if desired.

Operation

The Network modifier can operate in one of two modes, selectable from this drop-down:

Standard

The usual mode of operation, with particles outside of a closed object.

Inside Volume

In this mode, the particles stay inside a closed polygon object. More about this mode can be found below.

Change In and Variation

This determines how often the particle will change direction. It relates to the particle age, not the actual frame number of the animation. For example, if set to 10 frames, each particle will change direction when it is 10, 20, 30, etc. frames old. However, this setting is also affected by the threshold settings (see below).

A random element can be introduced by using the 'Variation' setting.

Standard operation

These parameters are used when 'Operation' is set to 'Standard'.

Plane

This parameter lets you restrict the change in direction to a specific (global) plane. The options are:

Any

The particle will move in all 3 planes.

XY, YZ, XZ

Particle movement is restricted to the selected plane.

Change Direction

This drop-down governs how the particle changes direction. It has three options:

Positive/Negative

When the direction changes, it will change by randomly choosing either to add or subtract the change angle to the heading and/or pitch.

Positive Only

The direction change will always add the change angle to the heading and/or pitch.

Negative Only

The direction change will always subtract the change angle from the heading and/or pitch.

Change Angle (Heading) and Change Angle (Pitch)

This is the angle by which the particle will change direction. The default is 90 degrees, so the particle will change direction by a right angle on heading and pitch.

A random element can be introduced to either heading and/or pitch by using the appropriate 'Variation' settings.

Heading Threshold and Pitch Threshold

In order to reduce the regularity of the changes in direction, the modifier will generate a random value between 0 and 100%. If this value falls below the threshold value, a direction change will not occur. This adds a degree of randomness to the changes in direction.

Note that if these values are set to 0%, a change in direction will always occur; if set to 100%, it will never occur.

For an interesting hexagonal effect, try setting the 'Change Angle (Heading)' to 60 degrees, set the 'Heading Threshold' to 0% and the 'Pitch Threshold' to 100%. Turn off sub-frame emission in the emitter, reduce the emitter size to zero, attach a Trail object to the emitter and play the animation.

Falloff Affects

This setting determines how the modifier's falloff will affect the change in direction. It has four settings:

Threshold

The two 'Threshold' values will be altered by the falloff.

Angle

The two 'Change Angle' values will be affected by the falloff.

Both

Both Threshold and Angle values will be affected by the falloff.

Neither

The falloff has no effect on either the Threshold or Angle values.

Inside Volume operation

These parameters are used when 'Operation' is set to 'Inside Volume'.

In this mode, the particles remain within a closed polygon object. This will cause the particles to bounce off the inside of the object, creating a grid inside it. To set this up correctly you need:

  • an object which is a single, closed object, either an editable polygon object or an object primitive
  • an emitter placed inside the object's volume
  • a Network modifier with the 'Operation' set to 'Inside 'Volume'

If this mode is selected, the interface changes slightly:

Object

Drag the object to be used into this field. Make sure you place the emitter inside this object.

Always Orthogonal

In this mode, the direction changes are always in 90 degree steps - there is no choice over the direction change angle. However, when emitted a particle may not be travelling along an orthogonal plane - for example, when emitted from a spherical emitter the direction is random. The modifier will force the particle to travel orthogonally as soon as it collides with the object interior. If this switch is checked the particles will travel orthogonally as soon as they are emitted.

In general it is recommended that you leave this switch checked, otherwise you may end up with something of a mess. But if you want the particles to travel in a random direction until the first collision, uncheck this switch.

Important: if this switch is unchecked, one effect is that the networking will not occur UNTIL the particle has collided with the inside of the mesh. This means that if a collision never occurs, there will be no network effect.

Volume Space

What do we mean by 'travel orthogonally'? It means that the particles will always travel parallel to one of the three axis planes - XY, XZ, or YZ. But the axis could mean either the 3D world axis, or the axis of the object. This drop-down allows you to choose:

Global

The axis planes are always those of the 3D world, regardless of how the object itself is rotated.

Local

The axis planes are those of the object, so if the object is rotated, the particles will travel parallel to its axis planes and not those of the 3D world.

Offset

Using an offset greater than zero will leave a gap between the particles and the object's polygons, effectively shrinking the inside volume.

Check Is Inside

This switch forces the modifier to check if a particle really is inside the object before changing direction. If you place the emitter inside a closed object, and neither the emitter or the object move, then you don't need to use this switch. But if, for example, the emitter is initially outside the object, the particles can never enter it and bounce around inside - they will always bounce back off the outside of the object.

Turning this switch on will cause the particle not to bounce off the object if it is outside. Then it can enter the object, at which point it will bounce and remain inside.